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The equivalents of the classical theorems of hydrodynamic stability are derived for 
inviscid flow through a flexible tube. An important difference between flows in plane 
and cylindrical geometries is that the Squire transformation, which states that two- 
dimensional perturbations in plane parallel flows are always more unstable than three- 
dimensional perturbations, is not valid for tube flows. Therefore, it is necessary to 
analyse both axisymmetric and non-axisymmetric perturbations in flows in cylindrical 
geometries. Perturbations of the form vi = Ciexp[ik(x-ct)+inq5] are imposed on a 
steady axisymmetric mean flow V(r),  and the stability of the mean velocity profiles and 
bounds for the phase velocity of the unstable modes are determined. Here r ,  4 and x 
are the radial, polar and axial directions, and k and c are the wavenumber and phase 
velocity. The flexible wall is represented by a standard constitutive equation which 
contains inertial, elastic and dissipative terms. Results for general velocity profiles are 
derived in two limiting cases : axisymmetric flows (n  = 0) and highly non-axisymmetric 
flows (n  + k ) .  The results indicate that axisymmetric perturbations are always stable 
for ( V”-F’ V ’ )  V 3 0 and could be unstable for (V”--r-’ V ’ )  V < 0, while highly 
non-axisymmetric perturbations are always stable for ( V” + Y-’ V ’ )  V 3 0 and could be 
unstable for (V”+r-’ V ’ )  Y < 0. In addition, bounds on the real part (c,) and 
imaginary part (ci) of the phase velocity are also derived. For the practically important 
case of Hagen-Poiseuille flow, the present analysis indicates that axisymmetric 
perturbations are always stable, while highly non-axisymmetric perturbations could be 
unstable. This is in contrast to plane parallel flows where two-dimensional disturbances 
are always more unstable than three-dimensional ones. 

1. Introduction 
The flow of a fluid in a flexible tube is encountered in many biological systems and 

biotechnology applications. Accurate predictions for the heat and mass transfer rates 
in these systems could be of use in optimizing process design. The transfer rates depend 
on the flow regime, and the transport coefficients in a turbulent flow are typically three 
orders of magnitude greater than those in a laminar flow. Thus, a good understanding 
of the transition from laminar to turbulent flow could be of importance in practical 
applications. In processes where high heat or mass transfer rates are desired, the 
process could be operated in the turbulent regime, while in systems where a low drag 
force is of importance, the laminar flow would be more suitable. The analysis of the 
hydrodynamic stability of the basic laminar flow is of interest because the laminar to 
turbulent transition is usually preceded by an instability of the laminar flow. In this 
study, the stability of inviscid flow in a flexible tube to both axisymmetric and non- 
axisymmetric perturbations is studied, and the equivalents of some of the classical 
results for parallel shear flows for general velocity profiles are derived. 

The stability of the flow through a two-dimensional rigid-walled channel is 
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constrained by the Rayleigh theorem, which states that an inflection point is necessary 
for unstable modes to exist. In addition, there are results due to Rayleigh, Howard and 
Hoiland (Drazin & Reid 1981) which place bounds on the real and imaginary parts 
of the phase velocity of unstable modes. Most two-dimensional flows encountered in 
practice, such as plane Poiseuille flow in a channel and boundary layer flows, do not 
have inflection points, and the Rayleigh theorem predicts that these flows are always 
stable. However, there are certain solutions of the complete Navier-Stokes equations 
which do not reduce to the solutions of the inviscid equations. These solutions, which 
involve an inner critical layer, where viscous forces are important, could become 
unstable when the Reynolds number is increased beyond a critical value. The fluid 
viscosity acts as a destabilizing effect for these modes, and this type of instability is 
called the Tollmien-Schlichting instability. In contrast, there is no critical layer in 
axisymmetric Hagen-Poiseuille flow in a tube, and so there is no destabilization due to 
viscous effects. The asymptotic analyses of Corcos & Sellars (1959) and Gill (1965) of 
high Reynolds number flow in a rigid tube showed that the flow is always stable. In 
addition, there have been many numerical studies of the linear stability of axisymmetric 
and non-axisymmetric perturbations for Hagen-Poiseuille flow in a rigid tube (Davey 
& Drazin 1969; Garg & Rouleau 1972; Salwen & Grosch 1972) which have concluded 
that the flow is stable to small disturbances at all Reynolds numbers. The 
experimentally observed instability at a Reynolds number of about 2300 (see, for 
example, Wygnanski & Champagne 1973) is considered to be due to finite amplitude 
perturbations, and if sufficient precautions are taken to prevent fluctuations in the 
apparatus, the flow can be maintained in the laminar regime at much higher Reynolds 
numbers. 

The study of the stability of flows over compliant walls has been motivated by the 
desirability of drag reduction in marine and aerospace applications. Following the 
experiments of Kramer (1960), Benjamin (1959, 1963) and Landahl (1962) used an 
extension of the theory of Tollmien (1929) to study the stability of the flow past a 
compliant surface. Benjamin found that the presence of a flexible wall tends to stabilize 
the Tollmien-Schlichting instability, but dissipation in the wall has a destabilizing 
effect. In addition, there is a type of instability called the flow-induced surface 
instability which is not present in the flow past a rigid surface. The earlier studies of 
Benjamin and Landahl used simple models such as those for membranes and plates. 
More complicated wall models which involve a plate supported on an isotropic or 
anisotropic elastic foundation backed by a liquid substrate have been studied 
Carpenter and coworkers (see, for example, Carpenter & Garrad 1985, 1986; 
Carpenter & Gajjar 1990; and the review article by Carpenter 1990). 

There is also experimental evidence to indicate that the stability of the flow in a 
flexible tube is affected by the wall dynamics. Krindel & Silberberg (1979) studied the 
flow of a fluid through a gel-walled tube, and reported that the Reynolds number for 
the transition from laminar to turbulent flow could be much lower than the value of 
2300 for a rigid tube. Evrensel et al. (1993) carried out numerical studies of the flow 
of air in a tube with a compliant wall to simulate the experiments of King, Brock & 
Lundell (1985) on the flow in pulmonary airways. They found that the transition 
Reynolds number was about 150 in an elastic tube, but increased significantly to about 
550 when viscous dissipation was included in the equations for the wall. In both the 
studies, the transition Reynolds number was found to depend on the elasticity of the 
wall in addition to the fluid properties, indicating that the wall dynamics has a 
significant influence on the flow. The experiments of Krindel & Silberberg also found 
that the variation in the drag force at the transition is gradual, in contrast to the near- 
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discontinuous change in the drag in a rigid tube. This suggests that the destabilizing 
mechanism in a flexible tube could be different from that in a rigid tube. 

The stability of viscous flow in a flexible tube was analysed by the author (Kumaran 
1995a) using a linear stability analysis. It was found that even in the absence of inertial 
effects, the flow could become unstable when the Reynolds number was increased 
beyond a critical value. The instability is caused by an additional term in the tangential 
velocity boundary condition at the interface between the fluid and the wall, which 
represents the variation in the mean velocity at  the surface due to the surface 
displacement. The destabilizing mechanism is the transport of energy from the mean 
flow to the fluctuations due to the shear work done by the mean flow at the interface. 
The stability of axisymmetric perturbations in high Reynolds number flow in a flexible 
tube was also studied by the author (Kumaran 1995h). In this regime, the flow in the 
core of the tube is inviscid, but viscous effects are important in a boundary layer of 
thickness Re at the walls. An asymptotic analysis in the small parameter Re-' was 
used. In the leading approximation, the perturbations were found to be neutrally stable 
because there is no dissipation of energy in the inviscid flow, and no transport of energy 
from the mean flow to the fluctuations. The first correction to the growth rate due to 
viscous effects was also calculated, and it was found that the real part of the first 
correction to the growth rate is always negative, indicating that the flow is stable. 

The high Reynolds number analysis is not conclusive, however, since only 
axisymmetric disturbances were considered. In addition, there are regions near the 
entrance of the tube where the flow profile is different from fully developed 
Hagen-Poiseuille flow, and the mean velocity in tubes of slowly varying cross-section 
could also be very different from Hagen-Poiseuille flow. Therefore, it is of interest to 
consider more general velocity profiles to draw definite conclusions about the stability 
limits. The computational effort required for determining the stability of non- 
axisymmetric modes is likely to be quite considerable owing to the presence of an 
additional parameter, and there do not appear to have been any systematic 
computational studies until now. The work involved would be greatly reduced if 
general criteria could be derived for potentially unstable velocity profiles, and 
bounds could be obtained for the growth rate and wave speed of the unstable modes. 
There are results due to Rayleigh, Fjerrtoft, Howard and H ~ i l a n d  (Drazin & Reid 1981) 
which predict potentially unstable velocity profiles and provide bounds on the phase 
velocity of the unstable mode for two-dimensional flows bounded by rigid walls. In the 
present analysis, these results are extended to flow in a flexible tube. 

The stability of inviscid flow is sensitively dependent on the boundary conditions at 
the surface, and the stability of flow near a rigid surface is very different from that near 
a flexible surface. The Rayleigh inflection point theorem, which states that unstable 
modes can exist only if the mean flow has an inflection point, is not applicable in a 
flexible channel because a non-zero normal velocity is permitted at the wall. The 
stability of inviscid flows in channels with passive compliant walls was analysed by Yeo 
& Dowling (1987) and Yeo (1994). A general constitutive equation for a compliant wall 
was derived using a variational-Lagrangian formulation, and this was used to relate the 
fluid velocity and stress at the wall. Bounds on the real and imaginary parts of the 
phase velocity were derived, and it was shown that the experimental observations of 
Gad-el-Hak, Blackwelder & Riley (1984) and Hansen et a f .  (1980) conformed to these 
bounds. In the present study, we examine the extent to which the classical results of 
hydrodynamic stability, and the results of Yeo & Dowling (1987) and Yeo (19941, can 
be extended to the flow through a flexible tube. 

There is one additional complication in tube flow which is not present in two- 
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dimensional flow. In the latter, the Squire transformation (Drazin & Reid 1981) can be 
invoked to show that a two-dimensional perturbation is always more unstable than a 
three-dimensional perturbation. The Squire transformation cannot be extended to a 
general two-dimensional flow near a flexible surface, but Rotenberry & Saffman (1990) 
have shown that two-dimensional disturbances are more unstable than three- 
dimensional disturbances for the specific case of channel flow when the stiffness, 
rigidity and damping coefficient of the wall are independent of the wavenumber of the 
perturbation. As a consequence, it is sufficient to analyse two-dimensional disturbances 
to derive stability criteria for these situations. There is no equivalent of the Squire 
transformation for tube flow, and non-axisymmetric modes could be more unstable 
than axisymmetric modes. It is possible to derive general results in two limiting cases. 
Axisymmetric modes are analysed in the next section, and ‘highly non-axisymmetric’ 
modes, where the gradients in the polar direction are large compared to those in the 
axial direction, are considered in $3. Results for the stability of parallel flows are 
usually derived using the stream function formulation because only two-dimensional 
disturbances are considered, and the fourth-order Orr-Sommerfeld equation for the 
stream function is used as the starting point. In the present case, it is more convenient 
to express the equations in terms of the velocity itself because axisymmetric and non- 
axisymmetric perturbations are considered. Despite this, the derivations are similar to 
those used for the classical results of hydrodynamic stability. 

2. Axisymmetric perturbations 
Consider an incompressible Newtonian fluid flowing through a tube of radius R 

bounded by a flexible surface as shown in figure 1. The mean velocity V(r) is 
axisymmetric and steady, and decreases to zero at the wall. A small-amplitude 
axisymmetric normal mode perturbation for the velocity has components v, and v, in 
the radial and axial directions of the form 

(2.1) 

where k is the real wavenumber of the perturbations, and c is the complex wave speed 
and we assume k 2 0 without loss of generality. The imaginary part of the wave speed, 
ci, is positive for unstable perturbations and negative for stable perturbations. The 
mass and momentum equations for an axisymmetric flow are 

vi = fii(r) exp [ik(x - ct)], 

(d, + r-l)  6, + iku“, = 0, 

d,p”+ik(V-c)B, = 0, 

ikp” + ik( V -  c) u”, + V’u“, = 0, 

where d, = (d/dr), p” is the pressure and V’ = d, V. The fluid density p does not 
explicitly appear in the above equation because the pressure has been scaled by the 
density. In the remainder of the analysis, all quantities are scaled by an appropriate 
combination of the density p, a velocity scale of the mean flow V, and the radius of 
the tube R, so all equations are dimensionless. The above equations can be combined 
by adding (ik x (2.3) -d, x (2.4)), and using (2.2) to express ij, in terms of ij,, to obtain 
the second-order Rayleigh-type equation for ijr : 

V” - y-l V’ 
v- c 

(d,2 + Y-’ d, - rP2 - k2) fi, - f i r  = 0. (2.5) 
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FIGURE 1. Configuration and definition of the coordinate system. 

Equation (2.5) is now multiplied by rfi:, where * denotes the complex conjugate, and 
integrated from 0 to 1 to obtain 

= (rGf d, ij,)l,=, - (6; d, 6r)lr=0. (2.6) 

The second term on the right-hand side of (2.6) is zero because the radial velocity is 
zero at the centre of the tube. 

The dynamics of the wall is represented by the normal displacement field, u, which 
is the displacement of the wall from its steady-state position due to the velocity 
fluctuations. In the linear analysis, the displacement field also has a normal mode form: 

u = tzexp[ik(x-ct)]. (2.7) 

For small displacements, the normal stress is a linear function of the displacement field. 
Here, the constitutive equation is considered to be of the form 

G = - (E-  k2c21- ikcD) tz, (2.8) 

where E, I and D are the positive constants associated with the elasticity, inertia and 
dissipation in the wall. These are in general functions of k ,  c and the wall properties. 
Equation (2.8) was derived by Yeo & Dowling (1987) for a passive compliant wall 
using a variational Lagrangian formulation of the wall dynamics. The right-hand side 
of (2.8) differs from that of Yeo & Dowling (1987) by a negative sign because tz is 
considered positive when directed outward along the radial direction. 

The boundary conditions at the interface between the wall and fluid are the 
continuity of velocity and normal stress : 

-ikctz = fir, (2.9) 
(2.10) 

where it has been assumed that k > O  without loss of generality. Using the above 
relations, the right-hand side of (2.6) can be expressed as 

G = -p = (V-c)C,+fi, V’/(ik), 

(2.11) 

where VL is the mean strain rate at the wall, and the mean velocity at the wall has been 
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set equal to zero. Inserting (2.11) into (2.6), multiplying the resulting equation by c and 
taking the imaginary part, we get 

For an unstable mode (ci > 0), the right-hand side of (2.12) is negative because E, Zand 
D are positive and k 2 0. The left-hand side can be negative only if (V" - r-l V ' )  V is 
negative at some point in the flow. This leads to the equivalent of the Rayleigh 
inflection point theorem for axisymmetric perturbations in a flexible tube : 

PROPOSITION 1. For an inviscidflow in aflexible-walled tube with V, = 0, an unstable 
axisymmetric mode can exist only if (V" - r-l V ' )  V < 0 somewhere in the flow. 

The above result is also a modification of Proposition 4 of Yeo (1994) for the flow near 
a flexible surface. For the practically important case of Hagen-Poiseuille flow in a tube, 
V"--r-'V' is identically zero, and the above proposition predicts that there are no 
unstable modes. In addition, two further conclusions can be drawn from (2.12) : 

COROLLARY 1. For an inviscid flow in a flexible-walled tube with V, = 0 and 
(V"-r-'V') V 2 0, all axisymmetric modes are neutrally stable if the wall is non- 
dissipative ( D  = 0). 

COROLLARY 2. For an inviscid flow in a flexible-walled tube with V, = 0 and 
(V" - r-l V ' )  V 2 0, all axisymmetric modes are damped i f  the wall is dissipative ( D  > 0). 

Another result can be derived by inserting (2.1 1) into (2.6), and taking the imaginary 
part of the resulting equation : 

For a flow with V ;  d 0, the right-hand side of (2.13) is negative for unstable modes 
with positive phase speed c, > 0. Such an instability can exist only if (V" - r-l V ' )  < 0 
somewhere in the flow. This gives the equivalent of the Fjarrtoft theorem (and 
Proposition 5 of Yeo 1994): 

PROPOSITION 2. For axisymmetric $ow in a flexible tube with V, = 0 and 
V ;  < O(V; >, 0), an unstable mode with c, 2 0 (c,  d 0)  can exist only if 
(V" - r-l V ' )  < 0 (V" - r-l V > 0)  somewhere in the flow. 

Bounds for the real part of the wavenumber c, of potentially unstable waves can be 
derived in a manner similar to Rayleigh's result (Drazin & Reid 1981) for the flow in 
a rigid-walled channel. Consider the function f ( r )  defined by 

v"r f l y )  = - 
v - c .  

(2.14) 

The Rayleigh equation (2.5) can be written in terms off as 

d, [( V -  c ) ~  d,f] + r-l( V -  c ) ~  d,f+ 2r-' V'( V -  c) f -  (r-2 + k2) ( V -  ~ ) ~ f =  0. (2.15) 
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The above equation is multiplied by rf * and integrated by parts: 

1 r dr [( V -  c)’((ld,f12 + ( rP2  + k 2 )  lf12) - 2r-1 V’( V -  c) l f 1 2 ]  = [( V -  c ) y *  d,f],=,. 

(2.16) 

[( V -  c)”f* d,,f],=, = [E- k2c2Z- ikcD - c’] ( j” f*) l r=l .  (2.17) 

When (2.17) is inserted into the right-hand side of (2.16), the imaginary part of the 
resulting equation is 

The right-hand side of (2.16) can be simplified using (2.9) and (2.10): 

j: r dr [ - 2ci( V -  c,) (Id,,f12 + (9 + k2) If]’) + 2 r - l ~ ~  V’ l , f 1 2 ]  

= [ - 2c, ci (1 + k2Z) - kc, D] ( f f* ) l rZ1 .  (2.18) 

From (2.1 8), certain conclusions can be drawn about the range of the real part of the 
wave speed, cT, for flows where the velocity is zero at the wall and varies monotonically 
towards the centre of the tube. First, consider the case where V 3 0 and V’ d 0 in the 
tube. For unstable upstream-travelling waves with c, < 0 and ci > 0, the left-hand side 
of (2.18) is negative while the right-hand side is positive, and the equality is never 
satisfied. Therefore, all unstable modes must have L‘, > 0. An upper bound on c, can 
be obtained as follows. For unstable downstream-travelling waves with c, > max ( V )  
and ci > 0, the right-hand side of (2.18) is negative since Zand D are positive and k 3 0. 
Using the inequality Ĵ : r dr [(c, - V )  (Id,f12 + (r-’ + k 2 )  If\’) + r- l  V’ lf12] 

> r dr [c,(k2 + r-’) I . f 12  - ( V(k2 + r -2)  - r-’ V’) lfI2], (2.19) 

a necessary condition for an unstable mode is that the integral on the right has to be 
negative. In order to obtain a bound on cr, it is necessary to use the symmetry condition 
u“, = 0 and that d,ij, is finite at the centre of the tube r = 0. Therefore, the functionf 
can be expressed as f = rF, where F is finite at the centre of the tube. When the term 
on the right in (2.19) is expressed in terms of F, the following inequality is a necessary 
condition for unstable modes : 

(2.20) 

For the above inequality to be valid, the integrand has to be negative at at least one 
point in the flow, and it is necessary that c, < max [V-  r V’ / (k2r2  + l)]. This provides 
an upper bound on the wave speed c,. A symmetrical argument can be used for the case 
V < 0 and V’ 2 0, and we have 

PROPOSITION 3 .  For an inviscidflow in aflexible-walled tube with V, = 0 and V’ d 0 
(V‘ 2 0 )  in the tube, all unstable axisymmetric modes have 
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A bound on the magnitude of the phase velocity (c( for axisymmetric perturbations 
can be obtained for a monotonically varying flow with V, = 0 and VV' < 0. 
Substituting (2.17) for the right-hand side of (2.16), multiplying the resulting equation 
by c* and taking the imaginary part, we get 

j: r dr \ci(lc12 - V') (\d,f12 + (r-' + k2) If\') + 2V1ci V' V If\"] 
= - [Ci E+ c,(kZZ+ 1) ( q + k  lc12D] (ff*)l,=,. (2.21) 

For unstable waves with ci > 0, the right-hand side of (2.21) is negative since E, I ,  D 
and k are positive. Using arguments similar to those leading to Proposition 3, it can 
easily be seen that 

PROPOSITION 4. For an inviscidjow in ajexible-walled tube with V, = 0 and V V' < 0 
in the tube, all unstable axisymmetric modes have 

IcI2 < max V 2 - -  [ k2r2 + 1 

The theorem of H ~ i l a n d  (Drazin & Reid 1981) can be extended to axisymmetric 
perturbations using methods similar to that for the flow past a rigid wall. The function 
g(r) is defined as 

(2.22) 

The conservation equation (2.5) expressed in terms of g is 

gV" g(V')2  3rP1V'g - 0. d, [( V -  c) d,g] + r-l( V -  c) d,g- (r-' + k2) (V-  c)g---- +-- 
2 4(V-c) 2 

(2.23) 
Equation (2.23) is multiplied by rg* and integrated from r = 0 to r = 1 to give 

~ ~ r d r [ ( ~ - c ) ( l d ~ ~ l ~ + ( r ~ z + k 2 ) l g l z )  

The right side of (2.24) can be simplified using (2.9) and (2.10) to express d, v", in terms 
of v",: 

Inserting (2.25) into (2.24), taking the imaginary part of the resulting equation and 
multiplying by ci, we obtain 

The right-hand side of (2.26) is positive for unstable waves with ci > 0, and a necessary 
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condition for the presence of unstable waves is that the left-hand side should also be 
positive. Using the inequality 

a necessary condition for the presence of unstable modes is that the integral on the right 
should be positive. The symmetry conditions at the centre of the tube require that g can 
be expressed as g = rG, where G is finite at the centre of the tube. Using this 
substitution, the necessary condition for unstable modes becomes 

(2.28) 

For the above inequality to be valid, the integrand on the left-hand side has to be 
positive at at least one point in the flow, and the following inequality has to hold for 
the phase velocity: 

cf < max (4 I v::;;::: + 1)). 
(2.29) 

However, since cf d I V -  cI2, (2.29) can be modified to read : 

axisymmetric modes have 
PROPOSITION 5. For an inviscidflow in aflexible-walled tube with V, = 0, all unstable 

?.2(V‘)2 1 i Z  

c, <,ax[ 4(k2r2 + 1) 1 . 

Propositions 3, 4 and 5 provide bounds on the real and imaginary parts of the phase 
velocity of unstable modes for an axisymmetric perturbation. 

It is of interest to compare the above results with those of Yeo & Dowling (1987) and 
Yeo (1994) for a two-dimensional flow past a flexible surface. Propositions 1 and 2 are 
similar to Propositions 4 and 5 of Yeo (1994), except that the term (V”-r-’V’) 
appears instead of V” in Yeo’s results. This might be anticipated, because a two- 
dimensional flow can be considered as the flow in a flexible tube where the variation 
in the mean velocity is confined to a thin region near the wall. In this case, V” B F’V’ 
because the radius of the tube is large compared to the characteristic length of the mean 
velocity, and the results of Yeo are recovered. In the case of the H d a n d  theorem 
(Proposition 5) ,  the present analysis requires c, < max [( V‘)2/4k2]1/2, which coincides 
with Proposition 3 of Yeo & Dowling (1994). Similarly, Proposition 3 of the present 
analysis requires that c, < max[V], which coincides with Proposition 1 of Yeo & 
Dowling for a monotonic velocity profile with a non-slip condition at the wall. 
Therefore, the present results are in agreement with those of Yeo & Dowling in the 
limit k >> 1. 

3. Non-axisymmetric perturbations 
In this section, the stability of a steady mean axisymmetric flow V(r) to non- 

axisymmetric disturbances is considered. Here, the velocity perturbation has 
components (ur ,  v#, v,) along the radial, azimuthal and axial directions. The normal- 
mode form of the velocity perturbation is 

(3.1) vi = 6,(r) exp [ik(x - ct) +in$], 
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where n is an integer. The linearized mass and momentum equations for an inviscid 
flow are 

(d, + r-') v", + r-' inv", + ikv", = 0, 
ik( V -  c) 8, + d,p" = 0, 

ik( V -  c) 6, + inr-lp" = 0, 

ik( V -  c) v", + V'v", + ikp" = 0. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Equations (3.2)-(3.5) can be simplified by first eliminating 8, using (3.2) and (3.4). 
From (3.2) 

fi$ = -l. [(d, + r-') 5, + ikv",] (3.6) 
-1 

r in 
and from (3.4) and (3.5) 

Equating (3.6) and (3.7), we get 

(kr)2( V -  c) [(d, + r-') 6, + ikv",. + n2 [ik( V -  c) 8, + V' 8,] = 0. (3.8) 

Solving (3.3), (3.5) and (3.8) simultaneously, the following Rayleigh-type equation is 
obtained for the velocity 8,: 

(3.9) 
It is difficult to obtain general results which are independent of the eigenvalues 6, 

owing to the presence of r-dependent coefficients in this equation. However, (3.9) is 
simplified considerably in the limit of highly non-axisymmetric modes n >> k .  This 
corresponds to long-wavelength non-axisymmetric perturbations, for which the 
variation in the azimuthal direction is large compared to that in the axial direction. For 
these perturbations, equation (3.9) reduces to 

d,2 + 3r-' d, - r-'(n2 - 1) - ("",+WL V')]  8, = 0. (3.10) 

Equation (3.10) can be analysed using methods similar to those used for axisymmetric 
perturbations. Multiplying (3.10) by r3$ and integrating from r = 0 to r = 1, we obtain 
the following equation : 

(V" + r-l V ' )  (V -  
I V -  c12 

1; r3 dr [Id, CrI2 + ( rP2(n2 - 1) + 
= (r38: d, V",)l,=, - (r3V": d, 17,)l,=~. (3.1 1) 

An expression for V": d, 17, can be derived from the boundary conditions (2.9) and 
(2.10) which relate the velocity and pressure fields. The fluid pressure is given by (3.5) : 

(3.12) p" = -,[ik(V-c)v",+ V'v",]. 
1 

ik 
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Equation (3.8) can be used to express f iZ in terms of f i r :  

11 

-1 ik( V -  c) CJ + V'Cr = (kr)2 + n2 [(kr)2( V -  c)  (d, + r-') + n2 V ' ]  6, + V'ijr 

- (kr)2 
(kr)' + n' - - [( V -  C) (d, + F') - V ' ]  6,. 

Inserting this into (3.12) for the pressure field, we get 

(3.13) 

(3.14) 

Using (2.9) and (2.10) for the relation between the pressure and the velocity field at the 
wall r = 1 (where V = 0), the final expression for a,* d, Cr is 

(3.15) 

where E, r a n d  D are E(k2 +n')/k", I(k' +n2)/k2 and D(k2 + n2)/k2 respectively. Note 
that expression (3.15) for the boundary condition is similar to (2.1 1) for axisymmetric 
perturbations, since E, r a n d  D are also positive constants. Since the results derived 
here depend only on the sign of the boundary terms containing E, I and D ,  the results 
for the non-axisymmetric perturbations can be derived in a manner very similar to 
those for the axisymmetric perturbations. Also note that E 9 E, and likewise for D and 
I ,  because n 9 k. 

The equivalent of the Rayleigh theorem for a highly non-axisymmetric modes can 
be obtained by inserting (3.15) into equation (3.1 l), multiplying by c and considering 
the imaginary part of the resulting equation : 

From (3.16), the following result and its corollaries are easily deduced in a manner 
similar to Proposition 1 and its corollaries: 

PROPOSITION 6.  For an inviscid,fiow in aflexible-walled tube with V, = 0 ,  a highly non- 
axisymmetric mode (k < n )  can be unstable only if ( V" + r-l  V' ) V < 0 somewhere in the 

COROLLARY 1. For an inviscid flow in a flexible-walled tube with V, = 0 and 
( V"+ r-l V ' )  V 3 0, all highly non-axisymmetric modes (k < n )  are neutrally stable if the 
wall is non-dissipative ( D  = 0). 

COROLLARY 2. For an inciscid f low in a JTexible-walled tube with V, = 0 and 
( V" + r-l  V ' )  V 3 0,  all highly non-axisymmetric modes (k < n )  are damped if the wall is 
dissiputive ( D  > 0). 

The equivalent of the Fjurtoft theorem for the flow in a flexible tube can be obtained 
by inserting (3.15) into (3.11) and taking the imaginary part of the resulting equation : 

pow. 
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From (3.17), the equivalent of Proposition 2 for a highly non-axisymmetric mode is: 

PROPOSITION 7. For an inuiscid %ow in a flexible tube with V, = 0 and V& d 0 
(V;  2 0) ,  an unstable highly non-axisymmetric mode (k  4 n)  with c, 2 0 (c, < 0)  can 
exist only if (V" + r-l V ' )  < 0 (( V" + rpl V ' )  > 0)  somewhere in the $ow. 

The range of potentially unstable wavenumbers can be obtained using a derivation 
similar to that for Proposition 3. Equation (2.14) forfis inserted into the conservation 
equation (3. lo), the result is multiplied by r3f* and integrated from r = 0 to r = 1. The 
equivalent of (2.16) for a highly non-axisymmetric mode, derived in this manner, is 

1; r3 dr [( V -  c ) ~  (Id,f12 + r-'((n2 - 1) - 2r-1 V'( V -  c) If['] = [( V -  c)"f* d, f ] , = l .  (3.18) 

The right-hand side of (3.18) can be simplified to give (analogous to (2.17)) 

[( V-  ~ ) ~ f *  d,fl,=, = [E-  k2c2T- ikcD- c2] ( f f * ) l r = l .  (3.19) 

Inserting (3.19) into (3.18) and taking the imaginary part of the resulting equation, we 
get 

[: r3 dr [ - 2ci( V -  c,) (Id,f12 + r-'(n2 - 1) l f 1 2 )  + 2 r - l ~ ~  V' IfI'] 

= [ - 2 ~ ,  ci( 1 + k2F) - kc, Is] (ff*)l,=,. (3.20) 

The equivalent of Proposition 3 for a highly non-axisymmetric mode can be obtained 
from (3.20) using arguments similar to those for the axisymmetric case: 

PROPOSITION 8. For an inviscid Pow in a jexible-walled tube with V, = 0 and 
V' d 0 (V' 2 0)  in the tube, all unstable highly non-axisymmetric modes with n 9 k have 

A bound on the magnitude of the phase velocity IcI can be derived in a manner 
similar to Proposition 4 for axisymmetric perturbations. Equation (3.18) is multiplied 
by c*, and the imaginary part of the resulting equation is 

J: r3 dr [ci [(lc12 - V 2 )  (Id,f12 + rP2(n2 - 1) lf12) + 2 r - l ~ ~  V' Vlf12] 

= -[CiE+ci(k2T+ 1) I ~ l ~ + k l ~ l ~ o ] ( f f * ) l , = , .  (3.21) 

The right-hand side of (3.21) is always negative for unstable modes. Using arguments 
similar to those for Proposition 4, we obtain 

PROPOSITION 9. For an inviscid$ow in ajexible-walled tube with V, = 0 in the tube, 
all unstable highly non-axisymmetric modes with n % k have 

The equivalent of Proposition 5 for the present case can be derived as follows. 
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Equation (2.22), which defines the function g, is inserted into the conservation equation 
(3. lo), multiplied by r3g* and integrated from r = 0 to r = 1 to give 

~ ~ i 3 d r [ ( V - c ) ( ~ d ~ g ~ ’ + i 2 ( n 2 -  l)lgI2) 

The right-hand side of (3.22) can be simplified using (3.14) for d,6,: 

Inserting (3.23) into (3.22), taking the imaginary part, and multiplying the result by ci, 
we get 

The right-hand side of (3.24) is always positive. A necessary condition for the left-hand 
side to be positive can be obtained using a derivation similar to that for Proposition 
5 :  

(3.25) 

Using cf < 1 V-cI2, we obtain the following equivalent of the H ~ i l a n d  theorem: 

all unstuble highly non-axisymmetric modes with n >> k have 
PROPOSITION 10. For an inviscid flow in aje.xible-walled tube with V,, = 0 in the tube, 

4. Conclusions 
In the present analysis, results for the possibility of unstable modes and the range of 

the phase velocity and growth rate of these modes were obtained for a general velocity 
profile in a flexible tube. These results are valid for an axisymmetric mean flow which 
satisfies the no-slip condition at the wall, and varies monotonically towards the centre 
of the tube. This is not a severe restriction, however, because most practical flows such 
as entry flows in cylindrical tubes and flows in tubes of slowly varying cross-section 
satisfy these conditions. Unlike the case of plane two-dimensional channels, there is no 
equivalent of the Squire transformation, which shows that non-axisymmetric 
perturbations are more stable than axisymmetric ones, in a cylindrical geometry. 
Therefore, i t  is necessary to analyse both axisymmetric and non-axisymmetric 
perturbations to determine the stability of the flow. 

The perturbation to the mean velocity field was considered to be of the form 
z‘, = F,(r) exp [ik(x - cr) +in$], and results were derived for two limiting cases: 
axisymmetric perturbations ( n  = O), and highly non-axisymmetric perturbations 
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(n $ k )  where the variation in the polar direction is large compared to that in the axial 
direction. The main results are summarized in table 1. The results for both axisymmetric 
and highly non-axisymmetric perturbations are similar to the classical theorems of 
hydrodynamic stability, and using these it should be possible to determine whether a 
mean flow could be unstable. In addition, bounds are derived for the real and 
imaginary parts of the phase velocity in both limits. The bounds prove inconclusive for 
the case n = 1 for highly non-axisymmetric perturbations, but the range of variation 
of the phase velocity becomes smaller as n increases. In particular, the growth rate ci 
decreases proportional to n-2 in the limit N >> 1, indicating that the higher harmonics 
become more stable as n increases beyond 1. 

Proposition 1 and its corollaries indicate that for the practically important case of 
steady Hagen-Poiseuille flow for which V” - r-l V’ = 0, perturbations are always 
neutrally stable for non-dissipative surfaces. This is in agreement with an earlier study 
(Kumaran 19953) of the high Reynolds number flow through a flexible tube. In the 
leading-order approximation, the viscous effects were neglected in the fluid and wall 
material and the flow was considered to be an inviscid flow through an elastic tube. 
There were multiple solutions for the growth rate of the perturbations, which were all 
imaginary indicating that the perturbations are neutrally stable, as predicted by 
Proposition 1. This result is not conclusive, however, and it is necessary to determine 
the effect of the viscous correction to the leading-order flow to determine the stability 
of the flow. This was examined in Kumaran (19953), and it was found that the 
correction to the growth rate is O(Re-li2) smaller than the leading-order frequency, due 
to the presence of a wall layer of thickness O(Re-ll2) at the wall. There is a transfer of 
energy from the mean flow to the fluctuations due to the convective (Reynolds stress) 
terms in the conservation equation, and due to the shear work down by the mean flow 
at the surface. These two energy transfer mechanisms turn out to have the same 
magnitude and opposite directions, resulting in no net transfer of energy from the 
mean flow to the fluctuations, and the fluctuations are stabilized due to the viscous 
dissipation in the wall layer. There are certain parameter values, however, where the 
wall layer amplitude becomes zero because the tangential velocity boundary condition 
is identically satisfied by the inviscid flow solutions. At these parameter values, the 
O(Re-1/2) correction to the growth rate is zero, and the O(Repl)  correction to the 
growth rate is negative, indicating that there is a small stabilizing effect due to the 
dissipation in the bulk of the fluid and the wall. 

Another situation of practical interest is the flow in the entrance region of a tube, 
where there is a transition from a plug flow to fully developed Hagen-Poiseuille flow, 
and it is of interest to examine whether the velocity profile in the entrance region could 
become unstable to axisymmetric perturbations. There are no general analytical 
solutions for the flow in the entrance region, but very near the entrance of the tube the 
velocity profile is similar to the boundary layer flow over a flat plate. In this region, a 
perturbation solution in the small parameter c = v x / R 2 Q  can be obtained using the 
method of Schlichting (1934, 1955). Here, V, is the uniform velocity at the entrance of 
the tube, x is the distance from the entrance of the tube and v is the kinematic velocity. 
The solution is of the form 

(4.1) 
where 7 = l y / ( x ~ / & ) ~ / ~ ]  is the Blasius similarity variable and primes represent 
derivatives with respect to 7. In (4.1), f l(r)  is the Blasius stream function (Batchelor 
1967) which is obtained by solving 

V(r) = V(K(r)  + #2(r> + * * .I, 

f4’+;fly; = 0 (4.2) 
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Highly non-axisymmetric 
Axisymmetric perturbations perturbations 

(V”+r-’V’)V>O Velocity profiles that are (V”-r-’V’) V >  0 
always stable 

modes 
Range of c, for unstable 

Range of IcI* for unstable 
modes 

Range of c, for unstable ‘2(V’)2 1 / 2  

modes c, <ma,[ 4(k“r” + 1 )  ] 

r V’ 
O < c , < m a x  V-- -1 1 [ n*-1  

TABLE 1. Stable velocity profiles and bounds on the phase velocity of unstable modes for axisym- 
metric (n = 0) and highly non-axisymmetric (n % k )  perturbations 

subject the boundary conditions 

1 
I 

f l (7 )  = 0 at 7 = 0, 
. f ; (q)  = 0 at 7 = 0, 
A(T/) = 1 at 7+m, 

and the higher-order corrections f,,,f,, . . . , are obtained by solving the higher-order 
equations for the stream function. In the present geometry, the distance from the wall 
y = R-r, and the limit c 4 1 implies R >> (vx/VJ1/*. Very near the entrance of the 
tube, the thickness of the boundary layer is small compared to the radius of the tube 
and the velocity profile is identical to that for the Blasius boundary layer over a 
flat plate. For this velocity profile, the possibility of unstable modes depends on the 
sign of 

In the limit t Q 1, the second term on the right-hand side is O(clliz) smaller than the first, 
and can be neglected. The solution for the Blasius steam functionfi(7) is well known 
(Batchelor 1967), and the third derivative fp ‘  is negative in the boundary layer, 
indicating that (V” - r-l V ’ )  V is negative near the entrance of the tube. Therefore, the 
simple calculation given above indicates that the velocity profile near the entrance of 
the tube could be unstable to inviscid axisymmetric perturbations according to 
Proposition 1. 

For highly non-axisymmetric perturbations, Proposition 6 indicates that a 
Hagen-Poiseuille flow could become unstable, since (V” + r-l V ’ )  V is negative for this 
flow. This is in contrast to parallel flows, where three-dimensional perturbations are 
always more stable than two-dimensional ones. Coupled with the predictions of 
Propositions 8, 9 and 10 that the bound on the growth rate decreases as n increases 
beyond 1, this indicates that non-axisymmetric modes with finite n are the most 
unstable modes in a flexible tube. 

Numerical studies of the air flow through a tube with a compliant lining were 
carried out by Evrensel et al. (1993), following the experimental work of King et al. 
(1985) on the air flow past a layer of mucus. The numerical studies used a tube 
diameter of 0.74 cm, and the shear wave speed of the mucus layer, C, = (G/pJ”,  
was 4.47 cm s-l, where G and pm are the shear modulus and density of the mucus. 
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Both elastic and viscoelastic surfaces were examined by Evrensel et al., and they found 
very different critical velocities in the two cases. For elastic surfaces, they found that 
the axisymmetric disturbances become unstable at an air velocity Vof about 28 cm s-l. 
However, at these velocities, the Reynolds number based on the tube diameter and the 
density and viscosity of air is only about 150, which may be too low to justify the 
inviscid flow approximation. The studies on a viscoelastic tube wall, however, found 
a critical velocity of about 1045 cm s-’. The Reynolds number in this case is about 
5500, and the inviscid approximation could be valid in this case. However, the value 
of V/C,  is O(234), indicating that the unstable modes are not inviscid modes, for 
which V/C,  - 1 (see Kumaran 1995b), but the instability could be induced by 
viscous effects. 

Proposition 6 states that a Hagen-Poiseuille flow could be unstable to non- 
axisymmetric modes, since (V”+r-’V’) V < 0 for a parabolic flow. It is useful to 
examine the parameter ranges in which this instability might be expected. From (3.17), 
(3.21) and (3.24), it can be seen that an instability can only be observed if the effective 
stiffness of the wall is E/pVk  - O(k2/n2) .  Since k < n in the highly non-axisyinmetric 
limit, this condition is equivalent to E/pV2, + 1. In air flows through soft materials 
such as the pulmonary linings, this condition is only satisfied for V, 9 100 cm sP1, 
since the shear modulus of these materials is O(10 dyn cmP2) and the density of air is 
O( g ~ m - ~ ) .  Therefore, non-axisymmetric inviscid modes would be observed only 
at velocities of 103-104 cm s-l (Re = 103-104), and viscosity-induced axisymmetric 
modes could appear at lower velocities, as observed by Evrensel et al. However, for the 
flow of liquids in flexible tubes, the condition is satisfied for V, 9 3 cm s-l since the 
density of liquids is 0(1 g cm-‘). In this case, non-axisymmetric modes could become 
unstable at velocities of 10-100 cm s-l (Re = 102-103). Since the velocity is relatively 
low in this case, non-axisymmetric disturbances could appear at lower velocities than 
viscosity-induced axisymmetric disturbances, and the results obtained here could be 
relevant for liquid flows in flexible tubes. 
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